论文标题

repoducedpapers.org:公开教学和结构化机器学习可重复性

ReproducedPapers.org: Openly teaching and structuring machine learning reproducibility

论文作者

Yildiz, Burak, Hung, Hayley, Krijthe, Jesse H., Liem, Cynthia C. S., Loog, Marco, Migut, Gosia, Oliehoek, Frans, Panichella, Annibale, Pawelczak, Przemyslaw, Picek, Stjepan, de Weerdt, Mathijs, van Gemert, Jan

论文摘要

我们介绍了reproduceedpapers.org:一个开放的在线存储库,用于教学和结构机器学习可重复性。我们评估了学生在AI研究人员中进行在线繁殖存储库的附加价值。我们使用匿名的自我评估调查并获得了144个回应。结果表明,从事复制项目的学生对科学复制品有更多的价值,并成为更批判的思想家。学生和AI研究人员同意,我们的在线繁殖存储库很有价值。

We present ReproducedPapers.org: an open online repository for teaching and structuring machine learning reproducibility. We evaluate doing a reproduction project among students and the added value of an online reproduction repository among AI researchers. We use anonymous self-assessment surveys and obtained 144 responses. Results suggest that students who do a reproduction project place more value on scientific reproductions and become more critical thinkers. Students and AI researchers agree that our online reproduction repository is valuable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源