论文标题
高维替代标记的双重稳定评估
Doubly-robust evaluation of high-dimensional surrogate markers
论文作者
论文摘要
在评估治疗,政策或干预的有效性时,所需的效果度量可能是昂贵的,而不是常规可用,或者可能需要很长时间。在这些情况下,有时可以确定可以更容易/快速/廉价捕获感兴趣的效果的代孕结果。在随机临床研究过程中测得的单个替代标记物的背景下,已经对评估替代标记强度的理论和方法进行了很好的研究。但是,当替代物的维度增长和/或研究数据是观察性时,缺乏量化替代标记效用的方法。我们提出了一种有效的非参数方法,用于评估不需要随机治疗的研究中的高维替代标记。我们的方法借鉴了量化替代标记的效用与因果推理的最基本工具之间的联系 - 即,估计平均治疗效果的方法。我们表明,最近开发了将机器学习方法纳入平均治疗效果估计中的方法,可用于评估替代标记。这使我们能够为关键数量得出限制渐近分布,并证明了它们在模拟中的良好性能。
When evaluating the effectiveness of a treatment, policy, or intervention, the desired measure of effectiveness may be expensive to collect, not routinely available, or may take a long time to occur. In these cases, it is sometimes possible to identify a surrogate outcome that can more easily/quickly/cheaply capture the effect of interest. Theory and methods for evaluating the strength of surrogate markers have been well studied in the context of a single surrogate marker measured in the course of a randomized clinical study. However, methods are lacking for quantifying the utility of surrogate markers when the dimension of the surrogate grows and/or when study data are observational. We propose an efficient nonparametric method for evaluating high-dimensional surrogate markers in studies where the treatment need not be randomized. Our approach draws on a connection between quantifying the utility of a surrogate marker and the most fundamental tools of causal inference -- namely, methods for estimating the average treatment effect. We show that recently developed methods for incorporating machine learning methods into the estimation of average treatment effects can be used for evaluating surrogate markers. This allows us to derive limiting asymptotic distributions for key quantities, and we demonstrate their good performance in simulation.