论文标题
Seiberg-Witten理论和拓扑递归
Seiberg-Witten Theory and Topological Recursion
论文作者
论文摘要
Kontsevich-Soibelman(2017)在通风结构方面重新制定了Eynard-orderin拓扑递归(2007),这为曲线模量空间与拓扑递归之间的关系提供了一些几何见解。在这项工作中,我们使用Seiberg-intent的曲线家族来研究这种关系的分析方法。特别是,我们将表明,计算Hitchin Systems的特殊Kahler的拓扑递归属的特殊Kahler的预属性,这是Baraglia-huang(2017)获得的,可以推广到嵌入在包括Seiberg-winter家族在内的Foliated Sympliate表面中的更普遍的曲线家族。因此,我们获得了类似的公式,该公式将塞伯格(Seiberg)的预势与左曲线上的拓扑递归属属属相关。
Kontsevich-Soibelman (2017) reformulated Eynard-Orantin topological recursion (2007) in terms of Airy structure which provides some geometrical insights into the relationship between the moduli space of curves and topological recursion. In this work, we investigate the analytical approach to this relationship using the Seiberg-Witten family of curves as the main example. In particular, we are going to show that the formula computing the Hitchin systems' Special Kahler's prepotential from the genus zero part of topological recursion as obtained by Baraglia-Huang (2017) can be generalized for a more general family of curves embedded inside a foliated symplectic surface, including the Seiberg-Witten family. Consequently, we obtain a similar formula relating the Seiberg-Witten prepotential to the genus zero part of topological recursion on a Seiberg-Witten curve.