论文标题

通过FPGA上的图神经网络加速带电的粒子跟踪

Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs

论文作者

Heintz, Aneesh, Razavimaleki, Vesal, Duarte, Javier, DeZoort, Gage, Ojalvo, Isobel, Thais, Savannah, Atkinson, Markus, Neubauer, Mark, Gray, Lindsey, Jindariani, Sergo, Tran, Nhan, Harris, Philip, Rankin, Dylan, Aarrestad, Thea, Loncar, Vladimir, Pierini, Maurizio, Summers, Sioni, Ngadiuba, Jennifer, Liu, Mia, Kreinar, Edward, Wu, Zhenbin

论文摘要

我们开发和研究基于图神经网络的带电粒子跟踪算法的FPGA实现。这两种互补的FPGA设计基于OpenCL,这是一个编写跨异构平台执行程序的框架,以及HLS4ML是基于高级合成的编译器HLS4ML,用于神经网络以固件转换。我们根据基准数据集评估和比较了实现的资源使用情况,延迟和跟踪性能。我们发现,基于CPU的执行是可能的,有可能使此类算法有效地用于将来的计算工作流程和基于FPGA的级别1触发器,在CERN大型强子对撞机上。

We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks. The two complementary FPGA designs are based on OpenCL, a framework for writing programs that execute across heterogeneous platforms, and hls4ml, a high-level-synthesis-based compiler for neural network to firmware conversion. We evaluate and compare the resource usage, latency, and tracking performance of our implementations based on a benchmark dataset. We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing workflows and the FPGA-based Level-1 trigger at the CERN Large Hadron Collider.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源