论文标题
局部在一类可压缩的非Newtonian Navier-Stokes方程的强大解决方案
Local-in-time existence of strong solutions to a class of compressible non-Newtonian Navier-Stokes equations
论文作者
论文摘要
本文的目的是展示对任意大型初始数据的广义可压缩纳维尔 - 斯托克斯方程的强大解决方案的当地存在。 $ l^p $ - 线性化方程的理论实现了,该方程是通过WEIS乘数定理获得的,可以看作是对shibata和Inomoto(专门针对可压缩流体)的工作的概括,以压缩可压缩的非牛顿流体。
The aim of this article is to show a local-in-time existence of a strong solution to the generalized compressible Navier-Stokes equation for arbitrarily large initial data. The goal is reached by $L^p$-theory for linearized equations which are obtained with help of the Weis multiplier theorem and can be seen as generalization of the work of Shibata and Enomoto (devoted to compressible fluids) to compressible non-Newtonian fluids.