论文标题

可扩展转移进化优化:应对大型任务实例

Scalable Transfer Evolutionary Optimization: Coping with Big Task Instances

论文作者

Shakeri, Mojtaba, Miahi, Erfan, Gupta, Abhishek, Ong, Yew-Soon

论文摘要

在当今的数字世界中,我们面临着由许多基于云的大型应用程序产生和操纵的数据和模型的爆炸。在这种情况下,现有的转移进化优化框架同时满足了两个重要质量属性,即(1)可扩展性与越来越多的源任务,以及(2)在线学习敏捷性,不利于对目标任务的相关来源的稀疏性。满足这些属性应有助于实际部署转移优化到具有较大任务现场的方案,同时遏制负面转移的威胁。虽然现有算法的应用仅限于数十个源任务,但在本文中,我们在启用两个以上的任务范围内进行了量子飞跃。即,我们有效地处理了1000个源任务局势以外的方案。我们设计了一个新颖的传递进化优化框架,其中包括两个共同发展的物种,用于在源知识的空间和目标问题的解决方案的搜索空间中进行关节进化。特别是,共同进化使学习的知识可以飞行,并加快目标优化任务中的融合。我们在一组实际动机的离散和连续优化示例中进行了一系列实验,其中包括大量的源任务 - 仅一小部分表示源目标相关性。实验结果表明,不仅通过越来越多的源任务可以有效地进行我们提出的框架规模,而且还可以有效地捕获相关资源的相关知识,从而实现可伸缩性和在线学习敏捷性的两个显着特征。

In today's digital world, we are faced with an explosion of data and models produced and manipulated by numerous large-scale cloud-based applications. Under such settings, existing transfer evolutionary optimization frameworks grapple with simultaneously satisfying two important quality attributes, namely (1) scalability against a growing number of source tasks and (2) online learning agility against sparsity of relevant sources to the target task of interest. Satisfying these attributes shall facilitate practical deployment of transfer optimization to scenarios with big task-instances, while curbing the threat of negative transfer. While applications of existing algorithms are limited to tens of source tasks, in this paper, we take a quantum leap forward in enabling more than two orders of magnitude scale-up in the number of tasks; i.e., we efficiently handle scenarios beyond 1000 source task-instances. We devise a novel transfer evolutionary optimization framework comprising two co-evolving species for joint evolutions in the space of source knowledge and in the search space of solutions to the target problem. In particular, co-evolution enables the learned knowledge to be orchestrated on the fly, expediting convergence in the target optimization task. We have conducted an extensive series of experiments across a set of practically motivated discrete and continuous optimization examples comprising a large number of source task-instances, of which only a small fraction indicate source-target relatedness. The experimental results show that not only does our proposed framework scale efficiently with a growing number of source tasks but is also effective in capturing relevant knowledge against sparsity of related sources, fulfilling the two salient features of scalability and online learning agility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源