论文标题
在Lyapunov-Perron上还原的马尔可夫主程
On the Lyapunov-Perron reducible Markovian Master Equation
论文作者
论文摘要
我们考虑$ M_ {D}(\ Mathbb {C})中的一个开放量子系统,由Quasiperiodic Hamiltonian控制,具有合理独立的频率,并且在假设Lyapunov-Perron降低相关的Schroedinger方程的假设下。我们在弱耦合极限方程中构建了马尔可夫主方程,并在弱耦合极限方面构建了CP分解的演变,从而从周期性情况下概括了我们先前的结果。该分析是通过应用投影操作员技术进行的,并以一些结果结论有关溶液的稳定性和准全球稳态的存在。
We consider an open quantum system in $M_{d}(\mathbb{C})$ governed by quasiperiodic Hamiltonian with rationally independent frequencies and under assumption of Lyapunov-Perron reducibility of associated Schroedinger equation. We construct the Markovian Master Equation and resulting CP-divisible evolution in weak coupling limit regime, generalizing our previous results from periodic case. The analysis is conducted with application of projection operator techniques and concluded with some results regarding stability of solutions and existence of quasiperiodic global steady state.