论文标题

群体到劳动互动问题的概率指导方法

A Probabilistic Guidance Approach to Swarm-to-Swarm Engagement Problem

论文作者

Uzun, Samet, Ure, Nazim Kemal

论文摘要

本文介绍了针对群体互动问题的概率指导方法。这个想法是基于将受控的群体驱动到对手群的基础上,在那里,对手群的目的是将其汇聚到与防御基本位置相对应的固定分布中。概率方法是基于设计马尔可夫链,用于分布群体以融合固定分布。这种方法是分散的,因此每个代理都可以独立于其他代理传播其位置。我们的主要贡献是将群体与潮湿的参与作为优化问题的制定,其中每个群体的种群随着每次互动而衰减,并确定受控群体的所需分布,以收敛时间变化的分布并消除对手群体的药物,直到对手群体进入防御性的基本位置。我们证明了在几种群参与方案中提出的方法的有效性。

This paper introduces a probabilistic guidance approach for the swarm-to-swarm engagement problem. The idea is based on driving the controlled swarm towards an adversary swarm, where the adversary swarm aims to converge to a stationary distribution that corresponds to a defended base location. The probabilistic approach is based on designing a Markov chain for the distribution of the swarm to converge a stationary distribution. This approach is decentralized, so each agent can propagate its position independently of other agents. Our main contribution is the formulation of the swarm-to-swarm engagement as an optimization problem where the population of each swarm decays with each engagement and determining a desired distribution for the controlled swarm to converge time-varying distribution and eliminate agents of the adversary swarm until adversary swarm enters the defended base location. We demonstrate the validity of proposed approach on several swarm engagement scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源