论文标题
渐次自由的量子正规化
Qubit regularization of asymptotic freedom
论文作者
论文摘要
我们提供了有力的证据表明,可以使用量子晶格哈密顿量(被称为“海森伯格 - 炸弹”,在希尔伯特空间中,每个空间lattice lattice lattice位点仅作用于希尔伯特空间,可以使用量子晶格汉密尔顿(Heisenberg-Comb)进行正规化渐近的(1+1) - 维非线性O(3)Sigma模型。 Heisenberg-Comb由一个旋转半磁性的抗铁磁性海森堡链组成,在每个晶格位点,抗铁磁偶联到第二个局部旋转半颗粒。使用世界线蒙特卡洛方法,我们表明该模型再现了传统模型的通用阶梯尺度函数,以达到晶格单元中200,000的相关长度,并争论如何出现连续性极限。我们提供了模型时间进化的量子电路描述,并认为近期量子计算机可能足以证明渐近自由。
We provide strong evidence that the asymptotically free (1+1)-dimensional non-linear O(3) sigma model can be regularized using a quantum lattice Hamiltonian, referred to as the "Heisenberg-comb", that acts on a Hilbert space with only two qubits per spatial lattice site. The Heisenberg-comb consists of a spin-half anti-ferromagnetic Heisenberg-chain coupled anti-ferromagnetically to a second local spin-half particle at every lattice site. Using a world-line Monte Carlo method we show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units and argue how the continuum limit could emerge. We provide a quantum circuit description of time-evolution of the model and argue that near-term quantum computers may suffice to demonstrate asymptotic freedom.