论文标题

二阶半参数推断多变量日志高斯Cox过程

Second order semi-parametric inference for multivariate log Gaussian Cox processes

论文作者

Hessellund, Kristian Bjørn, Xu, Ganggang, Guan, Yongtao, Waagepetersen, Rasmus

论文摘要

本文介绍了一种新方法,用于推断具有复杂强度函数的多元对数高斯COX过程(LGCP)的二阶属性。我们假设一个半参数模型,用于多元强度函数,该函数包含所有类型点共有的未指定的复杂因子。鉴于此模型,我们利用了几种类型的点的可用性来构建二阶有条件复合可能性,以推断LGCP的对相关性和横对相关函数。至关重要的是,这种可能性不取决于强度函数的未指定部分。我们还引入了一种用于模型选择的交叉验证方法和一种正规化推理算法,该方法可用于获得跨对相关函数的稀疏模型。该方法应用于模拟数据以及显微镜和犯罪学的数据示例。这显示了新方法如何优于非参数估计强度函数的现有替代方案。

This paper introduces a new approach to inferring the second order properties of a multivariate log Gaussian Cox process (LGCP) with a complex intensity function. We assume a semi-parametric model for the multivariate intensity function containing an unspecified complex factor common to all types of points. Given this model we exploit the availability of several types of points to construct a second-order conditional composite likelihood to infer the pair correlation and cross pair correlation functions of the LGCP. Crucially this likelihood does not depend on the unspecified part of the intensity function. We also introduce a cross validation method for model selection and an algorithm for regularized inference that can be used to obtain sparse models for cross pair correlation functions. The methodology is applied to simulated data as well as data examples from microscopy and criminology. This shows how the new approach outperforms existing alternatives where the intensity functions are estimated non-parametrically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源