论文标题

具有周期性系数的部分theta系列的量子模块化

Quantum modularity of partial theta series with periodic coefficients

论文作者

Goswami, Ankush, Osburn, Robert

论文摘要

我们明确证明了具有均匀或奇异系数的部分theta系列的量子模块。作为一个应用程序,我们表明Kontsevich-Zagier系列$ \ Mathscr {f} _t(q)$,它匹配(以统一的根)匹配(在Unity的根部)colored Jones for Torus结$ t(3,2^t)$,$ t \ geq 2 $的颜色jones polyenmial for torus nongy of torus nongy of torus nonity toy n of。这将Zagier在“奇怪”系列$ f(q)$的量子模块上的结果概括。

We explicitly prove the quantum modularity of partial theta series with even or odd periodic coefficients. As an application, we show that the Kontsevich-Zagier series $\mathscr{F}_t(q)$ which matches (at a root of unity) the colored Jones polynomial for the family of torus knots $T(3,2^t)$, $t \geq 2$, is a weight $3/2$ quantum modular form. This generalizes Zagier's result on the quantum modularity for the "strange" series $F(q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源