论文标题

Quark Gluon Jet歧视和弱监督学习

Quark Gluon Jet Discrimination with Weakly Supervised Learning

论文作者

Lee, Jason Sang Hun, Lee, Sang Man, Lee, Yunjae, Park, Inkyu, Watson, Ian James, Yang, Seungjin

论文摘要

目前正在研究深度学习技术,以进行高能量物理实验,以解决各种问题,夸克和格鲁恩歧视成为新算法的基准。 一个弱点是对蒙特卡洛模拟的传统依赖,这可能无法通过深度学习算法所需的细节来很好地建模。 弱监督的学习范式通过使用具有不同夸克的样品(gluon比例)而不是完全标记的样本,从而提供了分类的替代途径。 因此,范式具有巨大的粒子物理分类问题潜力,因为这些弱监督的学习方法可以直接应用于碰撞数据。 在这项研究中,我们表明,通过使用弱监督的学习,可以使用现实模拟的Dijet和Z+喷气事件样本来区分夸克和Gluon喷气机。 我们使用三种不同的机器学习方法:基于JET图像的卷积神经网络,基于粒子的经常性神经网络和基于特征的基于功能的增强决策树的Quark Jet分类的弱监督学习的表现并比较了Quark的弱监督学习。

Deep learning techniques are currently being investigated for high energy physics experiments, to tackle a wide range of problems, with quark and gluon discrimination becoming a benchmark for new algorithms. One weakness is the traditional reliance on Monte Carlo simulations, which may not be well modelled at the detail required by deep learning algorithms. The weakly supervised learning paradigm gives an alternate route to classification, by using samples with different quark--gluon proportions instead of fully labeled samples. The paradigm has, therefore, huge potential for particle physics classification problems as these weakly supervised learning methods can be applied directly to collision data. In this study, we show that realistically simulated samples of dijet and Z+jet events can be used to discriminate between quark and gluon jets by using weakly supervised learning. We implement and compare the performance of weakly supervised learning for quark--gluon jet classification using three different machine learning methods: the jet image-based convolutional neural network, the particle-based recurrent neural network and the feature-based boosted decision tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源