论文标题
有效的标签传播,用于判别半监督域的适应性
Effective Label Propagation for Discriminative Semi-Supervised Domain Adaptation
论文作者
论文摘要
半监督域的适应性(SSDA)方法在源域中提供了大量标记的数据时,在大规模图像分类任务中表现出了巨大的潜力,但是在目标域中提供了很少的标记样品。现有的解决方案通常集中在两个域之间的特征对齐方式上,同时很少关注目标域中学习表示的歧视能力。在本文中,我们提出了一种新颖有效的方法,即有效的标签传播(ELP),以使用有效的域间和内域的语义信息传播来解决此问题。对于域间的传播,我们提出了一个新的周期差异损失,以鼓励两个域之间的语义信息一致。对于域内传播,我们提出了一种有效的自我训练策略,以减轻伪标记的目标域数据中的噪声,并提高目标域中的特征可区分性。作为一般方法,我们的ELP可以轻松地应用于各种域的适应方法,并可以促进其在目标域中的特征歧视。在办公室和域基准测试的实验显示ELP始终将主流SSDA方法的分类精度提高了2%〜3%。此外,根据VISDA-2017基准的UDA实验,ELP还提高了UDA方法的性能(81.5%vs 86.1%)。我们的源代码和预培训模型将很快发布。
Semi-supervised domain adaptation (SSDA) methods have demonstrated great potential in large-scale image classification tasks when massive labeled data are available in the source domain but very few labeled samples are provided in the target domain. Existing solutions usually focus on feature alignment between the two domains while paying little attention to the discrimination capability of learned representations in the target domain. In this paper, we present a novel and effective method, namely Effective Label Propagation (ELP), to tackle this problem by using effective inter-domain and intra-domain semantic information propagation. For inter-domain propagation, we propose a new cycle discrepancy loss to encourage consistency of semantic information between the two domains. For intra-domain propagation, we propose an effective self-training strategy to mitigate the noises in pseudo-labeled target domain data and improve the feature discriminability in the target domain. As a general method, our ELP can be easily applied to various domain adaptation approaches and can facilitate their feature discrimination in the target domain. Experiments on Office-Home and DomainNet benchmarks show ELP consistently improves the classification accuracy of mainstream SSDA methods by 2%~3%. Additionally, ELP also improves the performance of UDA methods as well (81.5% vs 86.1%), based on UDA experiments on the VisDA-2017 benchmark. Our source code and pre-trained models will be released soon.