论文标题

3D超声数据中新生儿脑室心室的自动分割和位置学习,结合了CNN和CPPN

Automatic Segmentation and Location Learning of Neonatal Cerebral Ventricles in 3D Ultrasound Data Combining CNN and CPPN

论文作者

Martin, Matthieu, Sciolla, Bruno, Sdika, Michaël, Quétin, Philippe, Delachartre, Philippe

论文摘要

早产新生儿很可能患有心室肿瘤,这是大脑心室系统(CVS)的扩张。这种情况可能发展为威胁生命的脑积水,并与未来的神经发展障碍相关。因此,必须由医生检测和监测。在临床路由中,在2D超声(US)图像上进行手动2D测量以估算CVS量,但由于3D信息的不可用而不精确。解决此问题的一种方法是为3D US数据开发自动CVS细分算法。在本文中,我们研究了2D和3D卷积神经网络(CNN)解决这一复杂任务的潜力,并建议使用组合模式产生网络(CPPN)以使CNN能够学习CVS位置。我们的数据库由25个3D的美国销量组成,该量在21美元的早产仙境菜上收集,售价为35.8美元\ pm 1.6 $妊娠周。我们发现CPPN可以编码CVS位置,这在CNN的层数很少时提高了CNN的准确性。如果股体损坏为$ 0.893 \ pm 0.008 $和$ 0.886 \ pm 0.004 $,二维和3D CNN的准确性达到了观察者内变异性(IOV),分别为$ 0.893 0.24 $ cm $^3 $(IOV = $ 0.41 \ pm 0.05 $ cm $^3 $)。在正常心室的情况下,3D CNN比2D CNN更准确,骰子为$ 0.797 \ pm 0.041 $,而0.776 \ $ pm 0.038 $(IOV = $ 0.816 \ pm 0.009 $),体积0.29 $ 0.29 $ $ 0.29 $^$^$^3 $^$^$^$^$^335 $ i^$ i^335 \ i \ i^335 \ i^335 \ i^335 \ i^335 \ i \ i^335 $ i^$^335 \ i^$^335 \ i^335 \ i^$^335 \ i^335 \ iv; $ 0.2 \ pm 0.11 $ cm $^3 $)。 2D CNN以$ 3.5 \ pm 0.2 $ s获得了$ 320 \ times 320 $的最佳分段时间。

Preterm neonates are highly likely to suffer from ventriculomegaly, a dilation of the Cerebral Ventricular System (CVS). This condition can develop into life-threatening hydrocephalus and is correlated with future neuro-developmental impairments. Consequently, it must be detected and monitored by physicians. In clinical routing, manual 2D measurements are performed on 2D ultrasound (US) images to estimate the CVS volume but this practice is imprecise due to the unavailability of 3D information. A way to tackle this problem would be to develop automatic CVS segmentation algorithms for 3D US data. In this paper, we investigate the potential of 2D and 3D Convolutional Neural Networks (CNN) to solve this complex task and propose to use Compositional Pattern Producing Network (CPPN) to enable the CNNs to learn CVS location. Our database was composed of 25 3D US volumes collected on 21 preterm nenonates at the age of $35.8 \pm 1.6$ gestational weeks. We found that the CPPN enables to encode CVS location, which increases the accuracy of the CNNs when they have few layers. Accuracy of the 2D and 3D CNNs reached intraobserver variability (IOV) in the case of dilated ventricles with Dice of $0.893 \pm 0.008$ and $0.886 \pm 0.004$ respectively (IOV = $0.898 \pm 0.008$) and with volume errors of $0.45 \pm 0.42$ cm$^3$ and $0.36 \pm 0.24$ cm$^3$ respectively (IOV = $0.41 \pm 0.05$ cm$^3$). 3D CNNs were more accurate than 2D CNNs in the case of normal ventricles with Dice of $0.797 \pm 0.041$ against $0.776 \pm 0.038$ (IOV = $0.816 \pm 0.009$) and volume errors of $0.35 \pm 0.29$ cm$^3$ against $0.35 \pm 0.24$ cm$^3$ (IOV = $0.2 \pm 0.11$ cm$^3$). The best segmentation time of volumes of size $320 \times 320 \times 320$ was obtained by a 2D CNN in $3.5 \pm 0.2$ s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源