论文标题

深度学习局部降低密度矩阵的多体哈密顿估计

Deep learning Local Reduced Density Matrices for Many-body Hamiltonian Estimation

论文作者

Ma, Xinran, Tu, Z. C., Ran, Shi-Ju

论文摘要

人类专家无法通过简单地“读取”系数来有效地访问量子多体态的物理信息,而必须对先前的知识(例如订单参数和量子测量值)进行答复。在这项工作中,我们证明了卷积神经网络(CNN)可以从局部降低密度矩阵的系数中学习,以估计多体汉密尔顿人的物理参数,例如耦合强度和磁场,提供了状态为基础状态。我们提出了由两个主要部分组成的Qubismnet:Qubism映射将基态(或纯化的降低密度矩阵)视为图像,以及将图像映射到目标物理参数的CNN。通过为了平衡而对训练集进行某些限制,Qubismnet在几种量子自旋模型上表现出令人印象深刻的学习和概括能力。虽然训练样本仅限于参数的某些范围,但Qubismnet可以准确估算此类训练区域以外的状态参数。例如,我们的结果表明,Qubismnet可以通过从远离临界附近的各州学习来估计临界点附近的磁场。我们的工作阐明了一种以数据为基础的数据驱动方式来推断赋予设计基础状态的汉密尔顿人,因此将使量子技术的现有和未来的概括(例如基于汉密尔顿的量子模拟和州层析成像)有益。

Human experts cannot efficiently access the physical information of quantum many-body states by simply "reading" the coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements. In this work, we demonstrate that convolutional neural network (CNN) can learn from the coefficients of local reduced density matrices to estimate the physical parameters of the many-body Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states (or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work illuminates a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generalizations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源