论文标题
量子散步的共享量子秘密的概括量子传送
Generalized quantum teleportation of shared quantum secret with quantum walks
论文作者
论文摘要
最近,Lee等人。提出了第一个安全量子遗传协议,其中由任意数量的发件人共享的量子信息可以转移到另一个任意数量的接收器中。在这里,提出了通过引入量子散步,这是一个新颖的安全(N,M)量子传送,对N发件人和$ M $接收器之间的共享量子秘密。首先,N-Walker量子步行在生产线上提出了两种(N,2)传送方案,其第一个助行器分别由三个硬币驱动,基于两种硬币运算符:均匀的硬币和位置依赖性硬币。其次,通过将第一个助行器的硬币的量增加到M+1,可以将先前的(n,2)方案推广到(n,m)传送方案。然后,我们给出了我们提出的计划的信息安全性的证明,其中任何单个发件人和接收者都无法完全访问秘密量子信息。此外,需要进行投影测量值,而不是Lee等人协议中必需的联合铃铛测量值。在周期中,我们的工作也可以进一步扩展到QW。这项工作为量子信息处理任务的量子步道丰富提供了一个附加的相关实例,从而打开了量子步行的更广泛的应用目的。
Very recently, Lee et al. proposed the first secure quantum teleporation protocol, where quantum information shared by an arbitrary number of senders can be transferred to another arbitrary number of receivers. Here, by introducing quantum walks, a novel secure (n,m) quantum teleportation of shared quantum secret between n senders and $m$ receivers is presented. Firstly, two kinds of (n,2) teleportation schemes are proposed by n-walker quantum walks on the line, the first walker of which is driven by three coins, respectively, based on two kinds of coin operators: the homogeneous coins and the position-dependent coins. Secondly, by increasing the amount of the coins of the first walker to m+1, the previous (n,2) scheme can be generalized to (n,m) teleportation scheme. Then, we give the proof of the information security of our proposed scheme, in which neither any single nor subparties of senders and receivers can fully access the secret quantum information. Moreover, the projective measurements are needed, instead of the joint Bell measurements that are necessary in Lee et al.'s protocol. Our work can also be extended further to QWs on the cycle. This work provides an additional relevant instance of the richness of quantum walks for quantum information processing tasks and thus opens the wider application purpose of quantum walks.