论文标题
形成形状控制的正交基础方法(扩展版本)
An Orthogonal Basis Approach to Formation Shape Control (Extended Version)
论文作者
论文摘要
在本文中,我们提出了一种新的方法,以增强基于距离的形成控制器的问题,以防止3D形成歧义。具体而言,我们引入了三个受控变量,它们形成正交空间,并独特地表征了3D中四面体形成。这个正交的空间在距离距离的距离和四面体亚结构的签名体积上包含了约束。该编队是使用带有Leader-Aproloter类型配置和单积分动力学的有向图建模的。我们表明,所提出的分散形成控制器可确保\ textit {Global}渐近稳定性和对于没有歧义的\ textit {n}代理系统所需形成的局部指数稳定性。与以前的工作不同,该结果是在形成所需形成或对照增益的四面体上没有条件的。
In this paper, we propose a novel approach to the problem of augmenting distance-based formation controllers with a secondary constraint for the purpose of preventing 3D formation ambiguities. Specifically, we introduce three controlled variables that form an orthogonal space and uniquely characterize a tetrahedron formation in 3D. This orthogonal space incorporates constraints on the inter-agent distances and the signed volume of tetrahedron substructures. The formation is modeled using a directed graph with a leader-follower type configuration and single-integrator dynamics. We show that the proposed decentralized formation controller ensures the \textit{global} asymptotic stability and the local exponential stability of the desired formation for an \textit{n}-agent system with no ambiguities. Unlike previous work, this result is achieved without conditions on the tetrahedrons that form the desired formation or on the control gains.