论文标题

嘈杂观察的社会系统推论

Social System Inference from Noisy Observations

论文作者

Mao, Yanbing, Hovakimyan, Naira, Abdelzaher, Tarek, Theodorou, Evangelos

论文摘要

本文研究了社会系统从一个公众不断发展的意见的单个轨迹中的推论,其中观察噪声导致样本对时间和坐标的统计依赖性。我们首先提出了一个网络社会系统,该系统包括社交网络中的个人以及网络层中的一组信息源,其意见动态明确地考虑了确认偏见,新颖性偏见和过程噪声。然后,基于提出的社会模型,我们研究了最小二乘自动回归模型估计的样本复杂性,该模型的样本复杂性控制着足以使已确定模型达到规定的准确性和信心水平的观察值。在确定的社会模型的基础上,我们研究了社会推论,特别关注加权网络拓扑,潜意识偏见以及确认偏见和新颖性偏见的模型参数。最后,美国参议院成员意识形态数据验证了所提出的社会模型和推理算法的理论结果和有效性。

This paper studies social system inference from a single trajectory of public evolving opinions, wherein observation noise leads to the statistical dependence of samples on time and coordinates. We first propose a cyber-social system that comprises individuals in a social network and a set of information sources in a cyber layer, whose opinion dynamics explicitly takes confirmation bias, novelty bias and process noise into account. Based on the proposed social model, we then study the sample complexity of least-square auto-regressive model estimation, which governs the number of observations that are sufficient for the identified model to achieve the prescribed levels of accuracy and confidence. Building on the identified social model, we then investigate social inference, with particular focus on the weighted network topology, the subconscious bias and the model parameters of confirmation bias and novelty bias. Finally, the theoretical results and the effectiveness of the proposed social model and inference algorithm are validated by the US Senate Member Ideology data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源