论文标题
贝叶斯优化有助于无监督的学习,以在MRI中有效地进行肿瘤内分区和胶质母细胞瘤患者的存活预测
Bayesian optimization assisted unsupervised learning for efficient intra-tumor partitioning in MRI and survival prediction for glioblastoma patients
论文作者
论文摘要
胶质母细胞瘤在微结构和脉管系统中是非常异构的,这可能导致肿瘤区域多样性和明显的治疗反应。尽管在肿瘤次区域细分和生存预测中成功,但由于模糊的中间过程和跟踪变化,基于机器学习算法基于机器学习算法的放射组学受到了稳健性的挑战。同样,该模型的弱解释性为临床应用带来了挑战。在这里,我们提出了一个机器学习框架,以半自动调整聚类算法,并定量地识别稳定的子区域,以实现可靠的临床生存预测。超参数由训练有素的高斯工艺(GP)替代模型的全球最小值通过贝叶斯优化(BO)自动确定,以减轻对临床研究人员调整参数的难度。为了增强生存预测模型的可解释性,我们通过分割肿瘤子区域并提取次区域特征来结合肿瘤内异质性的先验知识。结果表明,训练有素的GP替代物的全球最小值可以用作优化的高参数溶液,以提高效率。基于生理MRI分段的子区域可以应用于预测患者的生存,这可以增强机器学习模型的临床解释性。
Glioblastoma is profoundly heterogeneous in microstructure and vasculature, which may lead to tumor regional diversity and distinct treatment response. Although successful in tumor sub-region segmentation and survival prediction, radiomics based on machine learning algorithms, is challenged by its robustness, due to the vague intermediate process and track changes. Also, the weak interpretability of the model poses challenges to clinical application. Here we proposed a machine learning framework to semi-automatically fine-tune the clustering algorithms and quantitatively identify stable sub-regions for reliable clinical survival prediction. Hyper-parameters are automatically determined by the global minimum of the trained Gaussian Process (GP) surrogate model through Bayesian optimization(BO) to alleviate the difficulty of tuning parameters for clinical researchers. To enhance the interpretability of the survival prediction model, we incorporated the prior knowledge of intra-tumoral heterogeneity, by segmenting tumor sub-regions and extracting sub-regional features. The results demonstrated that the global minimum of the trained GP surrogate can be used as sub-optimal hyper-parameter solutions for efficient. The sub-regions segmented based on physiological MRI can be applied to predict patient survival, which could enhance the clinical interpretability for the machine learning model.