论文标题

冲击波/湍流边界层相互作用中的因果关系

Causality in the shock wave/turbulent boundary layer interaction

论文作者

Sasaki, Kenzo, Barros, Diogo C., Cavalieri, André V. G., Larchevêque, Lionel

论文摘要

考虑了管理2马赫2的冲击波/湍流边界层相互作用中低频不稳定的机制。该研究是根据涵盖大约300个低频冲击波动的大型模拟发出的数值数据库进行的。对相互作用区域中光谱的评估表明,宽带低频不稳定主要是二维的,并且可以通过Spanwise平均分离。经验得出的转移函数是使用平均流场计算的,并指示下游流动区域和冲击波动之间发生反馈机制。传输函数还用作准确预测冲击运动的估计工具。对于输入信号和输出信号之间最大的流向分离,在预测数据和LES数据之间观察到高于0.6的相关性。光谱正确的正交分解(SPOD)模式的计算证实了在领先光谱模式下上游行进波的存在。最后,使用冲击下游的选定流动区获得的光谱模式可以重建相互作用区域的大部分能量。当前的结果进一步阐明了驱动冲击运动的物理机制,指出下游区域之间的因果行为以及在近似休克位置处的特征不稳定波动。

The mechanisms governing the low-frequency unsteadiness in the shock wave/turbulent boundary layer interaction at Mach 2 are considered. The investigation is conducted based on the numerical database issued from large-eddy simulations covering approximately 300 cycles of the low-frequency shock fluctuations. The evaluation of the spectrum in the interaction zone indicates that the broadband low-frequency unsteadiness is predominantly two-dimensional, and can be isolated via spanwise averaging. Empirically derived transfer functions are computed using the averaged flow field, and indicate the occurrence of a feedback mechanism between downstream flow regions and shock fluctuations. The transfer functions are also used as an estimation tool to predict the shock motion accurately; for the largest streamwise separation between input and output signals, correlations above 0.6 are observed between predicted and LES data. Computation of spectral proper orthogonal decomposition (SPOD) modes confirms the existence of upstream traveling waves in the leading spectral mode. Finally, the spectral modes obtained using selected flow regions downstream of the shock enable the reconstruction of a significant portion of the energy in the interaction zone. The current results shed further light on the physical mechanisms driving the shock motion, pointing towards a causal behavior between downstream areas and the characteristic unsteady fluctuations at the approximate shock position.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源