论文标题

行人行为预测的双分和语义推理

Bifold and Semantic Reasoning for Pedestrian Behavior Prediction

论文作者

Rasouli, Amir, Rohani, Mohsen, Luo, Jun

论文摘要

行人行为预测是智能驾驶系统的主要挑战之一。行人经常表现出受各种上下文元素影响的复杂行为。为了解决这个问题,我们提出了Biped,这是一个多任务学习框架,该框架通过依靠多模式数据来同时预测行人的轨迹和行动。我们的方法受益于1)一种双叉编码方法,在该方法中独立处理不同的数据模式,使他们能够开发自己的表示形式,并共同使用共享参数为所有模式产生表示形式; 2)一种新型的互动建模技术,依赖于场景的分类语义解析来捕获目标行人及其周围环境之间的相互作用; 3)双面预测机制,同时使用多模式表示的独立和共享解码。使用公共行人行为基准数据集进行驾驶,PIE和JAAD,我们重点介绍了提出的行为预测方法的好处,并表明我们的模型可实现最先进的性能,并将轨迹和行动预测分别提高了22%和9%。我们通过广泛的消融研究进一步研究了提出的推理技术的贡献。

Pedestrian behavior prediction is one of the major challenges for intelligent driving systems. Pedestrians often exhibit complex behaviors influenced by various contextual elements. To address this problem, we propose BiPed, a multitask learning framework that simultaneously predicts trajectories and actions of pedestrians by relying on multimodal data. Our method benefits from 1) a bifold encoding approach where different data modalities are processed independently allowing them to develop their own representations, and jointly to produce a representation for all modalities using shared parameters; 2) a novel interaction modeling technique that relies on categorical semantic parsing of the scenes to capture interactions between target pedestrians and their surroundings; and 3) a bifold prediction mechanism that uses both independent and shared decoding of multimodal representations. Using public pedestrian behavior benchmark datasets for driving, PIE and JAAD, we highlight the benefits of the proposed method for behavior prediction and show that our model achieves state-of-the-art performance and improves trajectory and action prediction by up to 22% and 9% respectively. We further investigate the contributions of the proposed reasoning techniques via extensive ablation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源