论文标题
不确定性驱动的GCN细分策略
An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation
论文作者
论文摘要
CT体积中的器官分割是许多计算机辅助干预和诊断方法中重要的预处理步骤。近年来,卷积神经网络在这项任务中占据了最新的状态。但是,由于该问题由于器官的形状和组织之间的相似性的高度变化而构成了一个具有挑战性的环境,因此输出分割中假阴性和假阳性区域的产生是一个常见的问题。最近的工作表明,该模型的不确定性分析可以为我们提供有关分割中潜在错误的有用信息。在这种情况下,我们提出了一种基于不确定性分析和图形卷积网络的分割细化方法。我们在特定的输入量中采用卷积网络的不确定性水平来制定半监督的图形学习问题,该问题通过训练图形卷积网络解决。为了测试我们的方法,我们完善了2D U-NET的初始输出。我们使用NIH Pancreas数据集和医疗分割十项全能的脾脏数据集验证了我们的框架。我们表明,就原始U-NET的预测而言,我们的方法优于最先进的CRF改进方法,而胰腺的骰子得分提高了1%,而Spleen的骰子得分为2%。最后,我们对提案的参数进行敏感性分析,并讨论对其他CNN体系结构的适用性,模型的结果和当前局限性,以在此研究方向上进行未来的工作。出于可重复性目的,我们在https://github.com/rodsom22/gcn_refinement上公开代码。
Organ segmentation in CT volumes is an important pre-processing step in many computer assisted intervention and diagnosis methods. In recent years, convolutional neural networks have dominated the state of the art in this task. However, since this problem presents a challenging environment due to high variability in the organ's shape and similarity between tissues, the generation of false negative and false positive regions in the output segmentation is a common issue. Recent works have shown that the uncertainty analysis of the model can provide us with useful information about potential errors in the segmentation. In this context, we proposed a segmentation refinement method based on uncertainty analysis and graph convolutional networks. We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem that is solved by training a graph convolutional network. To test our method we refine the initial output of a 2D U-Net. We validate our framework with the NIH pancreas dataset and the spleen dataset of the medical segmentation decathlon. We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen, with respect to the original U-Net's prediction. Finally, we perform a sensitivity analysis on the parameters of our proposal and discuss the applicability to other CNN architectures, the results, and current limitations of the model for future work in this research direction. For reproducibility purposes, we make our code publicly available at https://github.com/rodsom22/gcn_refinement.