论文标题

使用深度学习预测太阳能活动区域中光电磁场的演变

Predicting the Evolution of Photospheric Magnetic Field in Solar Active Regions Using Deep Learning

论文作者

Bai, Liang, Bi, Yi, Yang, Bo, Hong, Jun-Chao, Xu, Zhe, Shang, Zhen-Hong, Liu, Hui, Ji, Hai-Sheng, Ji, Kai-Fan

论文摘要

通过太阳能动力学观测站(SDO)/Helioseissic和磁成像仪(HMI)对磁场的连续观察产生了时空和空间中的许多图像序列。这些序列为预测光磁场的演变提供了数据支持。基于时空长短期内存(LSTM)网络,我们使用活跃区域中光谱磁场的预处理数据来构建用于磁场演化的预测模型。由于精致的学习和记忆机制,训练有素的模型可以表征时空特征中包含的固有关系。预测模型的测试结果表明,(1)该模型学到的预测模式可以应用于未经训练的接下来的6小时内预测新磁场的演变,并且预测结果与大尺度结构和运动速度方面的实际观察到的磁场演化至关重要; (2)模型的性能与预测时间有关;预测时间越短,预测结果的准确性就越高; (3)模型的性能不仅对于北部和南部的活动区域,而且对于正面和负区域的数据而言稳定。详细的实验结果和关于磁通量出现和磁中性线的讨论最终表明,所提出的模型可以有效地预测活性区域光球磁场的大规模和短期演化。此外,我们的研究可能会为其他太阳活动的时空预测提供参考。

The continuous observation of the magnetic field by Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) produces numerous image sequences in time and space. These sequences provide data support for predicting the evolution of photospheric magnetic field. Based on the spatiotemporal long short-term memory(LSTM) network, we use the preprocessed data of photospheric magnetic field in active regions to build a prediction model for magnetic field evolution. Because of the elaborate learning and memory mechanism, the trained model can characterize the inherent relationships contained in spatiotemporal features. The testing results of the prediction model indicate that (1) the prediction pattern learned by the model can be applied to predict the evolution of new magnetic field in the next 6 hour that have not been trained, and predicted results are roughly consistent with real observed magnetic field evolution in terms of large-scale structure and movement speed; (2) the performance of the model is related to the prediction time; the shorter the prediction time, the higher the accuracy of the predicted results; (3) the performance of the model is stable not only for active regions in the north and south but also for data in positive and negative regions. Detailed experimental results and discussions on magnetic flux emergence and magnetic neutral lines finally show that the proposed model could effectively predict the large-scale and short-term evolution of the photospheric magnetic field in active regions. Moreover, our study may provide a reference for the spatiotemporal prediction of other solar activities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源