论文标题
液态金属磁磁体的自由下落速度和热传输增强
Free-fall velocities and heat transport enhancement in liquid metal magneto-convection
论文作者
论文摘要
在地理和天体物理学中,较低的prandtl数量对流流通常与磁场相互作用。尽管静态磁场在此类流场上充当稳定力,但我们发现自组织的对流流量结构达到了最佳状态,在该状态下,热传输显着增加,对流速度达到理论上的自由下限极限,即,当其潜在的生物构成能量完全转化为基因时,流体包裹的最大速度可以达到。我们的测量结果表明,静态磁场的应用导致各向异性,高度有序的流动结构和湍流波动的减少。当磁场强度超出最佳距离时,Hartmann的制动将占主导地位,并导致热量和动量传输的降低。该结果与理解行星岩心和恒星内部的磁流体动力对流流有关,其垂直于温度梯度的区域强烈的环形磁场的区域。
In geo- and astrophysics, low Prandtl number convective flows often interact with magnetic fields. Although a static magnetic field acts as a stabilizing force on such flow fields, we find that self-organized convective flow structures reach an optimal state where the heat transport significantly increases and convective velocities reach the theoretical free-fall limit, i.e. the maximum possible velocity a fluid parcel can achieve when its potential buoyant energy is fully converted into kinetic energy. Our measurements show that the application of a static magnetic field leads to an anisotropic, highly ordered flow structure and a decrease of the turbulent fluctuations. When the magnetic field strength is increased beyond the optimum, Hartmann braking becomes dominant and leads to a reduction of the heat and momentum transport. The results are relevant for the understanding of magneto-hydrodynamic convective flows in planetary cores and stellar interiors in regions with strong toroidal magnetic fields oriented perpendicular to temperature gradients.