论文标题

部分约束的内部线性组合:低噪声CMB前景缓解方法

Partially Constrained Internal Linear Combination: a method for low-noise CMB foreground mitigation

论文作者

Abylkairov, Y. Sultan, Darwish, Omar, Hill, J. Colin, Sherwin, Blake D.

论文摘要

内部线性组合(ILC)方法是CMB数据分析中使用的一些最广泛使用的多频清洁技术。这些方法通过最大程度地减少共同地图的总差异(受信号保护约束)来减少前景,尽管仍然存在明显的前景残留物或偏见。对ILC方法的修改是受约束的ILC(CILC),该ILC(CILC)明确将某些前景组件取消。但是,这种前景无效通常是基于地面的CMB数据集的高价,而在小尺度上,地图噪声大大增加。在本文中,我们探讨了一种新方法,即部分约束的ILC(PCILC),这使我们能够优化ILC方法中前景偏差和差异之间的权衡。特别是,这种方法使我们能够最大程度地减少受到不等性约束的方差,要求将约束前景减少至少固定因子,这可以根据预期应用的前景灵敏度选择。我们在模拟的天空图上测试了Simons天文台样实验的方法;我们发现,对于在[3000,4800] $中以$ \ ell \ \ in [3000,4800] $清洁热阳光Sunyaev-Zel'dovich(TSZ)污染,如果可以容忍标准ILC残留的20%的小TSZ残留物,则CMB温度图的方差至少降低了CILC值的50%。我们还证明了这种方法的应用,以减少CMB透镜重建中的噪声。

Internal Linear Combination (ILC) methods are some of the most widely used multi-frequency cleaning techniques employed in CMB data analysis. These methods reduce foregrounds by minimizing the total variance in the coadded map (subject to a signal-preservation constraint), although often significant foreground residuals or biases remain. A modification to the ILC method is the constrained ILC (cILC), which explicitly nulls certain foreground components; however, this foreground nulling often comes at a high price for ground-based CMB datasets, with the map noise increasing significantly on small scales. In this paper we explore a new method, the partially constrained ILC (pcILC), which allows us to optimize the tradeoff between foreground bias and variance in ILC methods. In particular, this method allows us to minimize the variance subject to an inequality constraint requiring that the constrained foregrounds are reduced by at least a fixed factor, which can be chosen based on the foreground sensitivity of the intended application. We test our method on simulated sky maps for a Simons Observatory-like experiment; we find that for cleaning thermal Sunyaev-Zel'dovich (tSZ) contamination at $\ell \in [3000,4800]$, if a small tSZ residual of 20% of the standard ILC residual can be tolerated, the variance of the CMB temperature map is reduced by at least 50% over the cILC value. We also demonstrate an application of this method to reduce noise in CMB lensing reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源