论文标题
使用功能加密进行隐私保护垃圾邮件过滤
Privacy-Preserving Spam Filtering using Functional Encryption
论文作者
论文摘要
传统的垃圾邮件分类要求最终用户向侵犯隐私的垃圾邮件分类器揭示其收到的电子邮件的内容。通过加密电子邮件进行垃圾邮件分类使分类器可以在不访问电子邮件的情况下对垃圾邮件进行分类,因此可以保护电子邮件内容的隐私。在本文中,我们构建了一个垃圾邮件分类框架,该框架能够分类加密的电子邮件。我们的分类模型基于具有二次网络部分和多层感知网络部分的神经网络。二次网络体系结构与现有二次功能加密方案的操作兼容,该方案使我们的分类能够预测加密电子邮件的标签,而无需透露相关的普通文本电子邮件。现实世界中垃圾邮件数据集的评估结果表明,我们提出的垃圾邮件分类模型的精度超过96%。
Traditional spam classification requires the end-user to reveal the content of its received email to the spam classifier which violates the privacy. Spam classification over encrypted emails enables the classifier to classify spam email without accessing the email, hence protects the privacy of email content. In this paper, we construct a spam classification framework that enables the classification of encrypted emails. Our classification model is based on a neural network with a quadratic network part and a multi-layer perception network part. The quadratic network architecture is compatible with the operation of an existing quadratic functional encryption scheme that enables our classification to predict the label of encrypted emails without revealing the associated plain-text email. The evaluation results on real-world spam datasets indicate that our proposed spam classification model achieves an accuracy of over 96%.