论文标题
编成递增的潜在接触
Codimensional Incremental Potential Contact
论文作者
论文摘要
我们扩展了以弹性动力学的联系来解决由编成弹性DOF组成的系统,以任意组合解决弹性动力学。这使统一,无互穿,稳定和稳定的模拟框架将Codimension-0,1,2和3个几何形状与摩擦接触无缝地无缝。将IPC扩展到薄结构在计算应变,建模厚度和确定碰撞方面带来了新的挑战。为了应对这些挑战,我们提出了三个相应的贡献。首先,我们引入了一个C2组成式屏障模型,该模型在保留静止状态的同时直接将应变限制为能量电位。这为布提供了能量固定的应变限制模型(各向同性和各向异性),可严格满足应变限制不平等,直接耦合弹性动力学,并通过最小化增量电位来接触。其次,为了捕获编成域的几何厚度,我们将IPC模型扩展到直接强制距离偏移。我们的治疗严格保证了壳的中间曲面(分别中间线)(杆)不会比应用厚度值更近。这使我们能够说明编成结构的接触行为的厚度,并因此可以稳健地捕获具有挑战性的接触几何形状;据我们所知,许多以前尚未模拟其中的许多。第三,尤其是建模厚度的编成模型,授权严格的准确性要求,对所有现有的连续碰撞检测(CCD)方法构成了严重挑战。为了解决这些局限性,我们开发了一种新的,高效的,简单的添加剂CCD(ACCD)方法,该方法将保守的进步适用于迭代的迭代优化,用于变形原始剂,并融合到影响时间。
We extend the incremental potential contact (IPC) model for contacting elastodynamics to resolve systems composed of codimensional DOFs in arbitrary combination. This enables a unified, interpenetration-free, robust, and stable simulation framework that couples codimension-0,1,2, and 3 geometries seamlessly with frictional contact. Extending IPC to thin structures poses new challenges in computing strain, modeling thickness and determining collisions. To address these challenges we propose three corresponding contributions. First, we introduce a C2 constitutive barrier model that directly enforces strain limiting as an energy potential while preserving rest state. This provides energetically-consistent strain limiting models (both isotropic and anisotropic) for cloth that enable strict satisfaction of strain-limit inequalities with direct coupling to both elastodynamics and contact via minimization of the incremental potential. Second, to capture the geometric thickness of codimensional domains we extend the IPC model to directly enforce distance offsets. Our treatment imposes a strict guarantee that mid-surfaces (resp. mid-lines) of shells (resp. rods) will not move closer than applied thickness values. This enables us to account for thickness in the contact behavior of codimensional structures and so robustly capture challenging contacting geometries; a number of which, to our knowledge, have not been simulated before. Third, codimensional models, especially with modeled thickness, mandate strict accuracy requirements that pose a severe challenge to all existing continuous collision detection (CCD) methods. To address these limitations we develop a new, efficient, simple-to-implement additive CCD (ACCD) method that applies conservative advancement to iteratively refine a lower bound for deforming primitives, converging to time of impact.