论文标题
多稳态中有源颗粒的逃生动力学
Escape dynamics of active particles in multistable potentials
论文作者
论文摘要
长寿命亚稳态状态之间的罕见过渡是各种物理,化学和生物学过程的基础。我们对反应机制的定量理解是由过渡状态理论的见解推动的。特别是,克莱默斯(Kramers)开发的动态框架标志着该领域的出色里程碑。但是,它的预测不适用于由非保守力或相关噪声历史驱动的系统。重要的系统是活性颗粒,在生物学和纳米技术中都很突出。在这里,我们将二氧化硅纳米颗粒捕获到可动的电位中。为了模仿活跃的粒子,我们将粒子归于模仿自我propuls的工程外力。我们研究了亚稳态状态之间的活性粒子的过渡速率,这是活性力的摩擦和相关时间的函数。我们的实验揭示了最大化率最大化的最佳相关时间的存在。这部小说\ emph {Active Activever}让人联想起备受赞誉的Kramers流动,尽管其起源根本不同。我们的观察结果通过对一维模型的理论分析进行了定量支持。除了对多质电位中有源粒子的逃生动力学的逃生动力学有更深入的了解,我们的工作还建立了一个新的,多功能的实验平台,以研究非平衡设置中的粒子动力学。
Rare transitions between long-lived metastable states underlie a great variety of physical, chemical and biological processes. Our quantitative understanding of reactive mechanisms has been driven forward by the insights of transition state theory. In particular, the dynamic framework developed by Kramers marks an outstanding milestone for the field. Its predictions, however, do not apply to systems driven by non-conservative forces or correlated noise histories. An important class of such systems are active particles, prominent in both biology and nanotechnology. Here, we trap a silica nanoparticle in a bistable potential. To emulate an active particle, we subject the particle to an engineered external force that mimics self-propulsion. We investigate the active particle's transition rate between metastable states as a function of friction and correlation time of the active force. Our experiments reveal the existence of an optimal correlation time where the transition rate is maximized. This novel \emph{active turnover} is reminiscent of the much celebrated Kramers turnover despite its fundamentally different origin. Our observations are quantitatively supported by a theoretical analysis of a one-dimensional model. Besides providing a deeper understanding of the escape dynamics of active particles in multistable potentials, our work establishes a new, versatile experimental platform to study particle dynamics in non-equilibrium settings.