论文标题

$ \ mathbb {r}^n $中原始晶格的等式分布

Equidistribution of primitive lattices in $\mathbb{R}^n$

论文作者

Horesh, Tal, Karasik, Yakov

论文摘要

我们将$ \ Mathbb {z}^{n} $内部的原始晶格算作$ d $,因为相对于此类晶格的某些参数,它们的covolume倾向于无穷大。这些参数包括一个晶格跨度的亚皮,即其对格拉斯曼尼亚的投影;它的同性恋班级;及其等效类模量重新缩放和旋转,通常称为形状。我们通过允许在参数的空间中进行集合来添加施密特的先前工作,这些参数足以结论这些参数的关节等分。除了原始的$ d $ lattices本身外,我们还考虑了它们在$ \ mathbb {z}^{n} $中的正交补充,并证明等均分配是共同用于原始晶格及其正交补充的。最后,我们针对原始晶格数量的渐近公式包括明确的误差项。

We count primitive lattices of rank $d$ inside $\mathbb{Z}^{n}$ as their covolume tends to infinity, with respect to certain parameters of such lattices. These parameters include, for example, the subsapce that a lattice spans, namely its projection to the Grassmannian; its homothety class; and its equivalence class modulo rescaling and rotation, often referred to as a shape. We add to a prior work of Schmidt by allowing sets in the spaces of parameters that are general enough to conclude joint equidistribution of these parameters. In addition to the primitive $d$-lattices themselves, we also consider their orthogonal complements in $\mathbb{Z}^{n}$, and show that the equidistribution occurs jointly for primitive lattices and their orthogonal complements. Finally, our asymptotic formulas for the number of primitive lattices include an explicit error term.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源