论文标题
来自成像光谱数据的量化植被生物物理变量:检索方法的综述
Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods
论文作者
论文摘要
即将进行的带有成像谱仪的卫星任务即将进行的卫星任务将很快获得前所未有的光谱数据流。该数据流将为量化多样的生化和结构植被特性提供大量机会。如此大的数据流的处理要求需要可靠的检索技术,以实现生物物理变量的时空显式量化。为了为这个新的地球观察时代做准备,本综述总结了在实验成像光谱研究中应用的最新检索方法,这些方法推断了各种植被生物物理变量。确定的检索方法分为:(1)参数回归,包括植被指数,形状指数和光谱转换; (2)非参数回归,包括线性和非线性机器学习回归算法; (3)基于物理的,包括使用数值优化和查找表方法的辐射转移模型(RTM)的反演; (4)混合回归方法,将RTM模拟与机器学习回归方法相结合。对于这些类别中的每一个,都给出了广泛应用的方法概述,并给出了用于映射植被特性的广泛应用方法。鉴于处理成像光谱数据,一个关键方面涉及处理光谱多重共线性的挑战。鉴于操作处理,提供强大的估计,检索不确定性和可接受的检索处理速度的能力是其他重要方面。为生物物理变量的运营生产提供了基于新代光谱的加工链的建议。
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices, and spectral transformations; (2) non-parametric regression, including linear and non-linear machine learning regression algorithms; (3) physically-based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up-table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties, and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for the operational production of biophysical variables are given.