论文标题

代表性提取和深层神经建议进行协作过滤

Representation Extraction and Deep Neural Recommendation for Collaborative Filtering

论文作者

Khoeini, Arash, Haratizadeh, Saman, Hoseinzade, Ehsan

论文摘要

许多深度学习方法通​​过从原始输入数据中构建复杂的特征来解决复杂的分类和回归问题。尽管一些作品研究了深层神经网络在推荐域中的应用,但它们主要是通过利用非结构化辅助数据(例如视觉和文本信息)来提取实体功能,并且在使用用户 - 项目额定矩阵时,功能提取是通过使用矩阵分解来完成的。由于矩阵分解有一些局限性,因此已经做了一些工作来用深神经网络替换它。但是这些工作要么需要利用非结构化数据,例如项目的评论或图像,要么是专门设计用于使用隐式数据的,并且不考虑用户项目评分矩阵。在本文中,我们研究了新的表示学习算法的用法,以从等级矩阵中提取用户和项目表示形式,并提供深层神经网络以进行协作过滤。我们提出的方法是一种模块化算法,该算法由两个主要阶段组成:表示提取和深神经网络(REXNET)。使用REXNET中的两个联合和并行的神经网络使其能够为每个实体提取功能的层次结构,以预测用户对项目的兴趣程度。然后将所得的预测用于最终建议。与其他深度学习建议方法不同,Rexnet并不取决于非结构化的辅助数据,例如视觉和文本信息,它仅使用用户项目率矩阵作为其输入。我们在针对最先进的建议方法的广泛实验中评估了REXNET。结果表明,REXNET在各种密度不同的数据集中显着优于基线算法。

Many Deep Learning approaches solve complicated classification and regression problems by hierarchically constructing complex features from the raw input data. Although a few works have investigated the application of deep neural networks in recommendation domain, they mostly extract entity features by exploiting unstructured auxiliary data such as visual and textual information, and when it comes to using user-item rating matrix, feature extraction is done by using matrix factorization. As matrix factorization has some limitations, some works have been done to replace it with deep neural network. but these works either need to exploit unstructured data such item's reviews or images, or are specially designed to use implicit data and don't take user-item rating matrix into account. In this paper, we investigate the usage of novel representation learning algorithms to extract users and items representations from rating matrix, and offer a deep neural network for Collaborative Filtering. Our proposed approach is a modular algorithm consisted of two main phases: REpresentation eXtraction and a deep neural NETwork (RexNet). Using two joint and parallel neural networks in RexNet enables it to extract a hierarchy of features for each entity in order to predict the degree of interest of users to items. The resulted predictions are then used for the final recommendation. Unlike other deep learning recommendation approaches, RexNet is not dependent to unstructured auxiliary data such as visual and textual information, instead, it uses only the user-item rate matrix as its input. We evaluated RexNet in an extensive set of experiments against state of the art recommendation methods. The results show that RexNet significantly outperforms the baseline algorithms in a variety of data sets with different degrees of density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源