论文标题

通过基于AI的Gleason分级预测前列腺癌特异性死亡率

Predicting Prostate Cancer-Specific Mortality with A.I.-based Gleason Grading

论文作者

Wulczyn, Ellery, Nagpal, Kunal, Symonds, Matthew, Moran, Melissa, Plass, Markus, Reihs, Robert, Nader, Farah, Tan, Fraser, Cai, Yuannan, Brown, Trissia, Flament-Auvigne, Isabelle, Amin, Mahul B., Stumpe, Martin C., Muller, Heimo, Regitnig, Peter, Holzinger, Andreas, Corrado, Greg S., Peng, Lily H., Chen, Po-Hsuan Cameron, Steiner, David F., Zatloukal, Kurt, Liu, Yun, Mermel, Craig H.

论文摘要

前列腺癌的格里森分级是一个重要的预后因素,但遭受重现性差,尤其是在非秘密病理学家中。尽管人工智能(A.I.)工具已经证明了与专家病理学家的格里森分级,但仍然是一个悬而未决的问题。分级转化为更好的预后。在这项研究中,我们开发了一种系统,通过基于AI的GLEASON分级来预测前列腺癌的特定死亡率,并随后评估了其在独立回顾性队列中风险分离患者的能力,从单个欧洲中心的2,807个前列腺切除术案件具有5 - 25年的随访(中位数:13,Intervarile范围9-17)。前列腺癌特异性死亡率的A.I.风险评分产生的C指数为0.84(95%CI 0.80-0.87)。将这些风险评分离散为类似于病理学家等级群体(GG)的风险群体,A.I。 C-指数为0.82(95%CI 0.78-0.85)。在原始病理报告中具有GG病例的子集(n = 1,517),连续和离散分级分别为0.87和0.85,而从报告中获得的GG为0.79(95%CI 0.71-0.86)。这些改进分别代表0.08(95%CI 0.01-0.15)和0.07(95%CI 0.00-0.14)。我们的结果表明,基于AI的GLEASON分级可以导致有效的风险分层,并需要进一步评估以改善疾病管理。

Gleason grading of prostate cancer is an important prognostic factor but suffers from poor reproducibility, particularly among non-subspecialist pathologists. Although artificial intelligence (A.I.) tools have demonstrated Gleason grading on-par with expert pathologists, it remains an open question whether A.I. grading translates to better prognostication. In this study, we developed a system to predict prostate-cancer specific mortality via A.I.-based Gleason grading and subsequently evaluated its ability to risk-stratify patients on an independent retrospective cohort of 2,807 prostatectomy cases from a single European center with 5-25 years of follow-up (median: 13, interquartile range 9-17). The A.I.'s risk scores produced a C-index of 0.84 (95%CI 0.80-0.87) for prostate cancer-specific mortality. Upon discretizing these risk scores into risk groups analogous to pathologist Grade Groups (GG), the A.I. had a C-index of 0.82 (95%CI 0.78-0.85). On the subset of cases with a GG in the original pathology report (n=1,517), the A.I.'s C-indices were 0.87 and 0.85 for continuous and discrete grading, respectively, compared to 0.79 (95%CI 0.71-0.86) for GG obtained from the reports. These represent improvements of 0.08 (95%CI 0.01-0.15) and 0.07 (95%CI 0.00-0.14) respectively. Our results suggest that A.I.-based Gleason grading can lead to effective risk-stratification and warrants further evaluation for improving disease management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源