论文标题
故障滑移反转的不确定性量化
Uncertainty quantification for fault slip inversion
论文作者
论文摘要
我们提出了一种有效的贝叶斯方法,以在缓慢的滑移事件中从大地数据中推断出故障位移。我们的滑移过程的物理模型还原为受约束的多个线性回归。假设用于测量数据的高斯模型,并考虑了未知故障滑移的多元截断正常的先验分布,所产生的后验分布也是多元截断的正常分布。关于后部,我们提出了一种基于最佳定向吉布斯的算法,该算法使我们能够从沿浸入沿倾角的高维后验分布和沿我们的断层电网划分的打击运动中有效采样。合成断层示例示例说明了所提出的方法的灵活性和准确性。该方法还应用于2006年墨西哥格雷罗(Guerrero)的慢速滑移事件的真实数据集,其目的是恢复已知界面上的断层滑移,该界面会在地面大地测量站观察到的位移。作为我们方法的副产品,我们能够估计具有不确定性定量的2006 Guerrero事件的力矩幅度。
We propose an efficient Bayesian approach to infer a fault displacement from geodetic data in a slow slip event. Our physical model of the slip process reduces to a multiple linear regression subject to constraints. Assuming a Gaussian model for the geodetic data and considering a multivariate truncated normal prior distribution for the unknown fault slip, the resulting posterior distribution is also multivariate truncated normal. Regarding the posterior, we propose an algorithm based on Optimal Directional Gibbs that allows us to efficiently sample from the resulting high-dimensional posterior distribution of along dip and along strike movements of our fault grid division. A synthetic fault slip example illustrates the flexibility and accuracy of the proposed approach. The methodology is also applied to a real data set, for the 2006 Guerrero, Mexico, Slow Slip Event, where the objective is to recover the fault slip on a known interface that produces displacements observed at ground geodetic stations. As a by-product of our approach, we are able to estimate moment magnitude for the 2006 Guerrero Event with uncertainty quantification.