论文标题

使用深层卷积神经网络具有多分辨率特征融合

Automatic Diagnosis of Malaria from Thin Blood Smear Images using Deep Convolutional Neural Network with Multi-Resolution Feature Fusion

论文作者

Mahmud, Tanvir, Fattah, Shaikh Anowarul

论文摘要

疟疾是一种危及生命的疾病,每年都会感染数百万人民的数以百万计的人,要求在发生任何损害之前更快地诊断以进行适当的治疗。在本文中,提出了一种基于端到端的深度学习方法,用于通过对从多元化的接受场提取的特征进行有效的优化,以更快地诊断出稀薄的血液涂片图像。首先,提出了一个高效,高度可扩展的深度神经网络,称为扩展网络,该网络通过不同的卷积速率来纳入较大范围的特征,以从不同的接受区域提取特征。接下来,将原始图像重新采样到各种分辨率,以在接收场中引入变化,这些变化用于独立优化不同形式的扩张网络,以缩放为不同的图像分辨率。之后,使用拟议的DeepFusionNet体系结构引入了功能融合方案,以共同优化这些在不同级别的观测水平上运行的单独训练的网络的特征空间。优化以从不同图像分辨率提取空间特征的各种形式的扩张网的卷积层都直接传输,以从任何图像中提供一个杂色的特征空间。后来,在深灌注网络中对这些空间特征进行了关节优化,以提取样品图像的最相关表示。该方案提供了通过改变观察水平来准确诊断异常的机会,可以广泛探索特征空间。对公开数据集进行的强烈实验表现出出色的性能,精度超过99.5%,表现优于其他最先进的方法。

Malaria, a life-threatening disease, infects millions of people every year throughout the world demanding faster diagnosis for proper treatment before any damages occur. In this paper, an end-to-end deep learning-based approach is proposed for faster diagnosis of malaria from thin blood smear images by making efficient optimizations of features extracted from diversified receptive fields. Firstly, an efficient, highly scalable deep neural network, named as DilationNet, is proposed that incorporates features from a large spectrum by varying dilation rates of convolutions to extract features from different receptive areas. Next, the raw images are resampled to various resolutions to introduce variations in the receptive fields that are used for independently optimizing different forms of DilationNet scaled for different resolutions of images. Afterward, a feature fusion scheme is introduced with the proposed DeepFusionNet architecture for jointly optimizing the feature space of these individually trained networks operating on different levels of observations. All the convolutional layers of various forms of DilationNets that are optimized to extract spatial features from different resolutions of images are directly transferred to provide a variegated feature space from any image. Later, joint optimization of these spatial features is carried out in the DeepFusionNet to extract the most relevant representation of the sample image. This scheme offers the opportunity to explore the feature space extensively by varying the observation level to accurately diagnose the abnormality. Intense experimentations on a publicly available dataset show outstanding performance with accuracy over 99.5% outperforming other state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源