论文标题

面部表情可以检测帕金森氏病:从网上收集的视频的初步证据

Facial expressions can detect Parkinson's disease: preliminary evidence from videos collected online

论文作者

Ali, Mohammad Rafayet, Myers, Taylor, Wagner, Ellen, Ratnu, Harshil, Dorsey, E. Ray, Hoque, Ehsan

论文摘要

帕金森氏病(PD)的症状之一是缺血或面部表情降低。在本文中,我们提出了用于PD的数字生物标志物,该数字生物标志物利用微表达研究。我们分析了从604个个人的1812个视频(61个具有PD的视频和无PD的543个,平均年龄63.9 YO,SD 7.8)的面部动作单元(AU),使用基于Web的工具(www.parktest.net)在线收集。在这些视频中,要求参与者做出三种面部表情(微笑,厌恶和惊讶的脸),然后是中立的脸。使用计算机视觉和机器学习中的技术,我们客观地测量了面部肌肉运动的方差,并用它来区分具有和没有PD的个体。使用面部微表达的预测准确性与利用运动症状的方法相媲美。 Logistic回归分析表明,与非PD个体相比,PD的参与者的AU6(脸颊启动器),AU12(唇角拉杆)和AU4(Brow较低)的差异较小。使用支持向量机的自动分类器对方差进行了训练,并达到了95.6%的精度。使用面部表情作为PD的生物标志物,对于需要物理分离的患者(例如,由于共同)或不动的患者,可能是有可能的变化。

One of the symptoms of Parkinson's disease (PD) is hypomimia or reduced facial expressions. In this paper, we present a digital biomarker for PD that utilizes the study of micro-expressions. We analyzed the facial action units (AU) from 1812 videos of 604 individuals (61 with PD and 543 without PD, mean age 63.9 yo, sd 7.8 ) collected online using a web-based tool (www.parktest.net). In these videos, participants were asked to make three facial expressions (a smiling, disgusted, and surprised face) followed by a neutral face. Using techniques from computer vision and machine learning, we objectively measured the variance of the facial muscle movements and used it to distinguish between individuals with and without PD. The prediction accuracy using the facial micro-expressions was comparable to those methodologies that utilize motor symptoms. Logistic regression analysis revealed that participants with PD had less variance in AU6 (cheek raiser), AU12 (lip corner puller), and AU4 (brow lowerer) than non-PD individuals. An automated classifier using Support Vector Machine was trained on the variances and achieved 95.6% accuracy. Using facial expressions as a biomarker for PD could be potentially transformative for patients in need of physical separation (e.g., due to COVID) or are immobile.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源