论文标题
无源数据的无监督域自适应对象检测的免费午餐
A Free Lunch for Unsupervised Domain Adaptive Object Detection without Source Data
论文作者
论文摘要
无监督的域适应性(UDA)假设源和目标域数据是免费的,通常可以一起训练以减少域间隙。但是,考虑到数据隐私和数据传输效率低下,在实际情况下,它是不切实际的。因此,它吸引了我们的眼睛,以优化目标域中的网络,而无需访问标记的源数据。为了在对象检测中探索这个方向,我们首次提出了一个无数据源域自适应对象检测(SFOD)框架,通过将其建模为使用嘈杂标签的学习问题。通常,一种直接的方法是利用从源域的预训练网络来生成伪标签以进行目标域优化。但是,由于目标域中没有标签可用,因此很难评估伪标签的质量。在本文中,自我注入下降(SED)是一种指标,旨在在不使用任何手工制作的标签的情况下搜索可靠的伪标签生成的适当置信阈值。尽管如此,完全干净的标签仍然无法实现。经过彻底的实验分析后,发现假阴性在产生的嘈杂标签中占主导地位。毫无疑问,假否定性挖掘有助于提高性能,我们通过像马赛克这样的数据增强来将其简化为假否定性模拟。在四个代表性适应任务中进行的广泛实验表明,所提出的框架可以很容易地实现最新的性能。从另一种角度来看,它还提醒UDA社区,在现有方法中未完全利用标记的源数据。
Unsupervised domain adaptation (UDA) assumes that source and target domain data are freely available and usually trained together to reduce the domain gap. However, considering the data privacy and the inefficiency of data transmission, it is impractical in real scenarios. Hence, it draws our eyes to optimize the network in the target domain without accessing labeled source data. To explore this direction in object detection, for the first time, we propose a source data-free domain adaptive object detection (SFOD) framework via modeling it into a problem of learning with noisy labels. Generally, a straightforward method is to leverage the pre-trained network from the source domain to generate the pseudo labels for target domain optimization. However, it is difficult to evaluate the quality of pseudo labels since no labels are available in target domain. In this paper, self-entropy descent (SED) is a metric proposed to search an appropriate confidence threshold for reliable pseudo label generation without using any handcrafted labels. Nonetheless, completely clean labels are still unattainable. After a thorough experimental analysis, false negatives are found to dominate in the generated noisy labels. Undoubtedly, false negatives mining is helpful for performance improvement, and we ease it to false negatives simulation through data augmentation like Mosaic. Extensive experiments conducted in four representative adaptation tasks have demonstrated that the proposed framework can easily achieve state-of-the-art performance. From another view, it also reminds the UDA community that the labeled source data are not fully exploited in the existing methods.