论文标题
定制的7NM CMOS标准单元库,用于实现基于TNN的神经形态处理器
A Custom 7nm CMOS Standard Cell Library for Implementing TNN-based Neuromorphic Processors
论文作者
论文摘要
为7NM CMOS细胞库开发了一组高度优化的自定义宏扩展,用于实现时间神经网络(TNN),可以模仿具有极端能量效率的大脑感觉处理。 MNIST的TNN原型(13,750个神经元和315,000个突触)仅需要1.56mm2的模具区域,仅消耗1.69MW。
A set of highly-optimized custom macro extensions is developed for a 7nm CMOS cell library for implementing Temporal Neural Networks (TNNs) that can mimic brain-like sensory processing with extreme energy efficiency. A TNN prototype (13,750 neurons and 315,000 synapses) for MNIST requires only 1.56mm2 die area and consumes only 1.69mW.