论文标题
弹簧翼系统的维度分析揭示了共振翼飞行的性能指标
Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight
论文作者
论文摘要
被认为通过使用弹性元素进行储能和返回来抵消振动昆虫,鸟类和机器人的高功率成本。昆虫在其飞行解剖结构中具有高弹性的弹性区域,可实现高动态效率。但是,最近的实验突出了由于昆虫胸部阻尼而导致的损失,这可能会降低这些弹性元素的好处。我们对具有弹性元件和与生物学相关的结构阻尼的动态尺度的射击模型进行了实验,并模拟了动态尺度的射击模型,以阐明体力学,空气动力学和在春季翼能量学中的作用。我们测量了受一系列致动参数,系统惯性和弹簧弹性的范围的振荡拍打动力学和能量。为了概括这些结果,我们得出了运动的非尺寸弹簧翼方程和描述拍打系统的共振属性的变量:$ n $,衡量惯性和空气动力学的相对影响,以及$ \ hat {k} $,降低的刚度。我们表明,内部阻尼量表的范围$ n $,表明动态效率随着$ n $的增加而单调降低。基于这些结果,我们引入了一个通用框架,以了解内部阻尼,空气动力和惯性力以及在所有弹簧翼系统中的弹性结构的作用。
Flapping-wing insects, birds, and robots are thought to offset the high power cost of oscillatory wing motion by using elastic elements for energy storage and return. Insects possess highly resilient elastic regions in their flight anatomy that may enable high dynamic efficiency. However, recent experiments highlight losses due to damping in the insect thorax that could reduce the benefit of those elastic elements. We performed experiments on, and simulations of a dynamically-scaled robophysical flapping model with an elastic element and biologically-relevant structural damping to elucidate the roles of body mechanics, aerodynamics, and actuation in spring-wing energetics. We measured oscillatory flapping wing dynamics and energetics subject to a range of actuation parameters, system inertia, and spring elasticity. To generalize these results, we derive the non-dimensional spring-wing equation of motion and present variables that describe the resonance properties of flapping systems: $N$, a measure of the relative influence of inertia and aerodynamics, and $\hat{K}$, the reduced stiffness. We show that internal damping scales with $N$, revealing that dynamic efficiency monotonically decreases with increasing $N$. Based on these results, we introduce a general framework for understanding the roles of internal damping, aerodynamic and inertial forces, and elastic structures within all spring-wing systems.