论文标题
弱均质变异不平等的存在结果
An existence result for weakly homogeneous variational inequalities
论文作者
论文摘要
在本文中,我们所关注的是有限维度真实希尔伯特空间上弱均匀的变化不平等。我们实现了涉及地图的前学期的共同阳性,自然图的规范重新定义和几个其他条件。我们使用的这些条件更容易与Gowda和Sossa建立的主要结果中使用的条件相互检查和跨越(数学计划177:149-171,2019)。作为推论,我们获得了涉及弱均匀图的非线性方程的可溶性结果。我们的结果丰富了弱均质变异不平等及其子类别问题的理论,从某种意义上说,Gowda和Sossa确立的主要结果涵盖了大部分存在的结果,其结果是基于弱均质变异不平等的亚类别问题。此外,我们将我们的{存在}结果与一般变异不等式获得的众所周知的胁迫结果进行了比较,并分别获得了一般互补性问题的规范恢复结果。
In this paper, what we concern about is the weakly homogeneous variational inequality over a finite dimensional real Hilbert space. We achieve an existence result {under} copositivity of leading term of the involved map, norm-coercivity of the natural map and several additional conditions. These conditions we used are easier to check and cross each other with those utilized in the main result established by Gowda and Sossa (Math Program 177:149-171, 2019). As a corollary, we obtain a result on the solvability of nonlinear equations with weakly homogeneous maps involved. Our result enriches the theory for weakly homogeneous variational inequalities and its subcategory problems in the sense that the main result established by Gowda and Sossa covers a majority of existence results on the subcategory problems of weakly homogeneous variational inequalities. Besides, we compare our {existence} result with the well-known coercivity result obtained for general variational inequalities and a norm-coercivity result obtained for general complementarity problems, respectively.