论文标题

在N体模拟中学习宇宙的演变

Learning the Evolution of the Universe in N-body Simulations

论文作者

Chen, Chang, Li, Yin, Villaescusa-Navarro, Francisco, Ho, Shirley, Pullen, Anthony

论文摘要

了解大型宇宙学调查的物理学至小(非线性)量表将显着提高我们对宇宙的了解。已经构建了大型N体模拟,以获得非线性制度中的预测。但是,N体模拟在计算上是昂贵的,并且产生了大量数据,从而使储存负担。这些数据是在不同时间的模拟宇宙的快照,对于准确保存其整个历史记录是必要的。我们采用深层神经网络模型来预测两个广泛分开的快照的中间时间步骤的非线性N体模拟。在插值N体模拟中,我们的结果超过了立方赫米特的插值基准方法。这项工作可以大大减少存储需求,并让我们从宇宙的快照中重建宇宙历史。

Understanding the physics of large cosmological surveys down to small (nonlinear) scales will significantly improve our knowledge of the Universe. Large N-body simulations have been built to obtain predictions in the non-linear regime. However, N-body simulations are computationally expensive and generate large amount of data, putting burdens on storage. These data are snapshots of the simulated Universe at different times, and fine sampling is necessary to accurately save its whole history. We employ a deep neural network model to predict the nonlinear N-body simulation at an intermediate time step given two widely separated snapshots. Our results outperform the cubic Hermite interpolation benchmark method in interpolating N-body simulations. This work can greatly reduce the storage requirement and allow us to reconstruct the cosmic history from far fewer snapshots of the universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源