论文标题
协变量通道的纠缠符号
Entanglement-symmetries of covariant channels
论文作者
论文摘要
令G和G'是单一等效的紧凑型量子组,让H为HOPF-GALOIS对象,意识到这些组的表示类别之间的单体等效性。这种单体等效性诱导了等效性chan(g) - > chan(g'),其中chan(g)是其对象是有限维c*代数的类别,具有G的作用,其形态是协方差通道。我们表明,如果Hopf-Galois对象H具有有限的尺寸 *代表,则通过此等效性相关的通道可以使用有限的维纠缠资源相互模拟。我们使用此结果来计算某些量子通道的纠缠辅助能力。
Let G and G' be monoidally equivalent compact quantum groups, and let H be a Hopf-Galois object realising a monoidal equivalence between these groups' representation categories. This monoidal equivalence induces an equivalence Chan(G) -> Chan(G'), where Chan(G) is the category whose objects are finite-dimensional C*-algebras with an action of G and whose morphisms are covariant channels. We show that, if the Hopf-Galois object H has a finite-dimensional *-representation, then channels related by this equivalence can simulate each other using a finite-dimensional entangled resource. We use this result to calculate the entanglement-assisted capacities of certain quantum channels.