论文标题

静态量子嵌入中的完全代数和自谐有效动力学

Fully Algebraic and Self-consistent Effective Dynamics in a Static Quantum Embedding

论文作者

Sriluckshmy, P. V., Nusspickel, Max, Fertitta, Edoardo, Booth, George H.

论文摘要

量子嵌入方法涉及对与更广泛环境纠缠的强相关系统的局部片段的自洽优化。最近建立了“能量加权”密度矩阵嵌入理论(EWDMET),目的是系统地控制片段 - 环境耦合的分辨率,并允许在该边界上进行真正的量子波动,以在完全静态的框架内自我优化。在这项工作中,我们重新制定了算法,以确保可以将Ewdmet视为等同于对动态均值理论(DMFT)自洽动力学的最佳和严格截断。这些量子嵌入方法的实际限制通常是定义量子效应的自洽对象的数值拟合。但是,我们在这里表明,在此公式中,所有数值拟合步骤均可通过有效的dyson方程在截断动力学的空间中完全规避。这为该方法提供了强大而分析的自构性,并从静态的波函数角度从系统地和严格地收敛到DMFT的能力。我们证明,这种改进的方法可以解决无限维度中Bethe Lattice Hubbard模型的相关动力和相变​​,以及一维Hubbard模型,我们清楚地表明了这种快速收敛基础对相关驱动的波动的好处。对问题的有效动力学的系统截断的描述还允许访问诸如费米液体参数和重新归一化的动力学等数量,并演示了与零温度均匀的均值均值场理论限制的数值高效,系统的收敛。

Quantum embedding approaches involve the self-consistent optimization of a local fragment of a strongly correlated system, entangled with the wider environment. The `energy-weighted' density matrix embedding theory (EwDMET) was established recently as a way to systematically control the resolution of the fragment-environment coupling, and allow for true quantum fluctuations over this boundary to be self-consistently optimized within a fully static framework. In this work, we reformulate the algorithm to ensure that EwDMET can be considered equivalent to an optimal and rigorous truncation of the self-consistent dynamics of dynamical mean-field theory (DMFT). A practical limitation of these quantum embedding approaches is often a numerical fitting of a self-consistent object defining the quantum effects. However, we show here that in this formulation, all numerical fitting steps can be entirely circumvented, via an effective Dyson equation in the space of truncated dynamics. This provides a robust and analytic self-consistency for the method, and an ability to systematically and rigorously converge to DMFT from a static, wave function perspective. We demonstrate that this improved approach can solve the correlated dynamics and phase transitions of the Bethe lattice Hubbard model in infinite dimensions, as well as one- and two-dimensional Hubbard models where we clearly show the benefits of this rapidly convergent basis for correlation-driven fluctuations. This systematically truncated description of the effective dynamics of the problem also allows access to quantities such as Fermi liquid parameters and renormalized dynamics, and demonstrates a numerically efficient, systematic convergence to the zero-temperature dynamical mean-field theory limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源