论文标题
在量子重力和干涉仪臂波动中的真空波动上
On Vacuum Fluctuations in Quantum Gravity and Interferometer Arm Fluctuations
论文作者
论文摘要
我们提出了一个由ADS/CFT激励的时空真空波动的简单模型,其中真空通过热密度矩阵描述,$ρ= \ frac {e^{ - k}} {\ mbox {tr}(e^{ - k})$ k $ k $ the Modular hamililton。在ADS/CFT中,已经计算了$ K $的期望值及其波动$ \langleΔK^2 \ rangle $;两者都遵守了面积法与黑洞机械的Bekenstein-Hawking地区定律相同:$ \ langle k \ rangle = \langleΔk^2 \ rangle = \ frac {a} {a} {4 g_n} $,在$ a $的情况下,$ a $是(极端)的面积。还显示出$ΔK$在广告中引人入胜,因此产生了度量波动。这些理论上的结果很有趣,但是尚不知道如何精确地将有关全息量子重力的这种想法扩展到普通的平坦空间。我们采用了考虑度量波动中的实验特征是否可以确定平坦空间中量子重力真空的特性。特别是,我们提出了一个由ADS/CFT计算动机的理论模型,该模型重现了模块化汉密尔顿波动的最重要特征。该模型由高职业人数骨气自由程度组成。我们表明,如果该理论通过普通的重力耦合耦合到具有类似于引力波的应变灵敏度的干涉仪中的镜子,则可以观察到真空波动。
We propose a simple model of spacetime vacuum fluctuations motivated by AdS/CFT, where the vacuum is described by a thermal density matrix, $ρ= \frac{e^{-K}}{\mbox{Tr}(e^{-K})}$ with $K$ the modular Hamiltonian. In AdS/CFT, both the expectation value of $K$ and its fluctuations $\langle ΔK^2 \rangle$ have been calculated; both obey an area law identical to the Bekenstein-Hawking area law of black hole mechanics: $\langle K \rangle = \langle ΔK^2 \rangle = \frac{A}{4 G_N}$, where $A$ is the area of an (extremal) entangling surface. It has also been shown that $ΔK$ gravitates in AdS, and hence generates metric fluctuations. These theoretical results are intriguing, but it is not known how to precisely extend such ideas about holographic quantum gravity to ordinary flat space. We take the approach of considering whether experimental signatures in metric fluctuations could determine properties of the vacuum of quantum gravity in flat space. In particular, we propose a theoretical model motived by the AdS/CFT calculations that reproduces the most important features of modular Hamiltonian fluctuations; the model consists of a high occupation number bosonic degree of freedom. We show that if this theory couples through ordinary gravitational couplings to the mirrors in an interferometer with strain sensitivity similar to what will be available for gravitational waves, vacuum fluctuations could be observable.