论文标题

Neurosymbolic AI:第三波

Neurosymbolic AI: The 3rd Wave

论文作者

Garcez, Artur d'Avila, Lamb, Luis C.

论文摘要

当前人工智能(AI)和机器学习(ML)的进步已经在研究社区和行业之间取得了前所未有的影响。然而,对AI的信任,安全性,解释性和问责制的关注是由有影响力的思想家提高的。许多人已经确定了有必要的知识表示和推理,以与深度学习和合理的解释性相结合。多年来,神经符号计算一直是一个积极的研究领域,试图通过网络模型的符号表示,通过推理和解释性结合鲁棒的学习。在本文中,我们将最新和早期的研究结果介绍了神经符号AI的结果,目的是识别下一波AI系统的关键成分。我们专注于以原则性的基于神经网络的学习方式与象征性知识表示和逻辑推理整合的研究。 20年的神经符号计算提供的见解显示出了新的光明,使AI的信任,安全性,可解释性和问责制越来越突出。我们还从神经符号系统的角度来确定了未来十年AI研究的有希望的方向和挑战。

Current advances in Artificial Intelligence (AI) and Machine Learning (ML) have achieved unprecedented impact across research communities and industry. Nevertheless, concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers. Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning and for sound explainability. Neural-symbolic computing has been an active area of research for many years seeking to bring together robust learning in neural networks with reasoning and explainability via symbolic representations for network models. In this paper, we relate recent and early research results in neurosymbolic AI with the objective of identifying the key ingredients of the next wave of AI systems. We focus on research that integrates in a principled way neural network-based learning with symbolic knowledge representation and logical reasoning. The insights provided by 20 years of neural-symbolic computing are shown to shed new light onto the increasingly prominent role of trust, safety, interpretability and accountability of AI. We also identify promising directions and challenges for the next decade of AI research from the perspective of neural-symbolic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源