论文标题
GNNUNLOCK:基于图形神经网络的无甲骨文 - 无用的解锁方案,可证明安全逻辑锁定
GNNUnlock: Graph Neural Networks-based Oracle-less Unlocking Scheme for Provably Secure Logic Locking
论文作者
论文摘要
在本文中,我们提出了Gnnunlock,这是对可证明的安全逻辑锁定的基于最初的无甲骨文学习的攻击,可以识别任何所需的保护逻辑,而无需关注特定的句法拓扑。关键是利用训练有素的图形神经网络(GNN)来识别属于目标保护逻辑的给定锁定网列中的所有门,而无需Oracle。这种方法完全符合目标问题,因为电路是具有固有结构的图形,并且保护逻辑是具有特定特征和常见特征的节点(门)的子图。 GNN在捕获节点的邻里属性方面非常有力,从而促进了保护逻辑的检测。为了纠正GNN引起的任何错误分类,我们还提出了基于连接分析的后处理算法以成功删除预测的保护逻辑,从而检索了原始设计。我们广泛的实验评估表明,Gnnunlock在使用剥离功能性逻辑锁定,顽强和无纹身的逻辑锁定和反SAT方面成功打破各种基准锁定的各种基准,并成功地打破了各种基准。我们提出的后处理提高了检测准确性,我们所有经过测试的锁定基准测试的精度达到了100%。对结果的分析证实了Gnnunlock足够强大,可以在不同的参数,合成设置和技术节点下打破所考虑的方案。评估进一步表明,Gnnunlock成功打破了即使是最先进的最新攻击失败的角落案例。
In this paper, we propose GNNUnlock, the first-of-its-kind oracle-less machine learning-based attack on provably secure logic locking that can identify any desired protection logic without focusing on a specific syntactic topology. The key is to leverage a well-trained graph neural network (GNN) to identify all the gates in a given locked netlist that belong to the targeted protection logic, without requiring an oracle. This approach fits perfectly with the targeted problem since a circuit is a graph with an inherent structure and the protection logic is a sub-graph of nodes (gates) with specific and common characteristics. GNNs are powerful in capturing the nodes' neighborhood properties, facilitating the detection of the protection logic. To rectify any misclassifications induced by the GNN, we additionally propose a connectivity analysis-based post-processing algorithm to successfully remove the predicted protection logic, thereby retrieving the original design. Our extensive experimental evaluation demonstrates that GNNUnlock is 99.24%-100% successful in breaking various benchmarks locked using stripped-functionality logic locking, tenacious and traceless logic locking, and Anti-SAT. Our proposed post-processing enhances the detection accuracy, reaching 100% for all of our tested locked benchmarks. Analysis of the results corroborates that GNNUnlock is powerful enough to break the considered schemes under different parameters, synthesis settings, and technology nodes. The evaluation further shows that GNNUnlock successfully breaks corner cases where even the most advanced state-of-the-art attacks fail.