论文标题

一种用于检测驱动的水下图像增强的生成方法

A Generative Approach for Detection-driven Underwater Image Enhancement

论文作者

Edge, Chelsey, Islam, Md Jahidul, Morse, Christopher, Sattar, Junaed

论文摘要

在本文中,我们引入了一种用于图像增强的生成模型,专门用于改善水下域中的潜水员检测。特别是,我们提出了一个模型,该模型将基于潜水员检测任务的基于生成的对抗网络(GAN)的图像增强。我们提出的方法重组了GAN目标函数,以包括预先训练的潜水员检测器的信息,其目标是生成图像,从而在不良视觉条件下提高检测器的准确性。通过将检测器输出纳入发电机和鉴别器网络,我们的模型能够专注于增强超出美学质量的图像,特别是改善了对潜水员的机器人检测。我们使用最先进的潜水员探测器在大型水肺潜水员数据集上训练我们的网络,并在人类机器人团队的海洋探索中展示了其效用。实验评估表明,我们的方法显着提高了对原始图像,甚至在最先进的水下水下图像增强算法的输出上的检测性能,甚至超过了检测性能。最后,我们演示了网络在嵌入式设备上的推理性能,以突出在移动机器人平台上操作的可行性。

In this paper, we introduce a generative model for image enhancement specifically for improving diver detection in the underwater domain. In particular, we present a model that integrates generative adversarial network (GAN)-based image enhancement with the diver detection task. Our proposed approach restructures the GAN objective function to include information from a pre-trained diver detector with the goal to generate images which would enhance the accuracy of the detector in adverse visual conditions. By incorporating the detector output into both the generator and discriminator networks, our model is able to focus on enhancing images beyond aesthetic qualities and specifically to improve robotic detection of scuba divers. We train our network on a large dataset of scuba divers, using a state-of-the-art diver detector, and demonstrate its utility on images collected from oceanic explorations of human-robot teams. Experimental evaluations demonstrate that our approach significantly improves diver detection performance over raw, unenhanced images, and even outperforms detection performance on the output of state-of-the-art underwater image enhancement algorithms. Finally, we demonstrate the inference performance of our network on embedded devices to highlight the feasibility of operating on board mobile robotic platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源