论文标题
分析智能行业的性能4.0在云计算系统上的应用
Analyzing the Performance of Smart Industry 4.0 Applications on Cloud Computing Systems
论文作者
论文摘要
基于云的深层神经网络(DNN)应用程序,使对潜伏期敏感的推断的应用已成为行业4.0中必不可少的一部分。由于多种租赁和资源异质性,这都是云计算环境固有的,因此基于DNN的应用程序的推理时间是随机的。这样的随机性,即使没有被捕获,可能会导致服务质量低(QoS),甚至可能导致石油和天然气行业等关键部门的灾难。为了使行业4.0强大,解决方案建筑师和研究人员需要了解基于DNN的应用程序的行为,并捕获其推理时期存在的随机性。因此,在这项研究中,我们从两个角度提供了推理时间的描述性分析。首先,我们执行以应用程序为中心的分析,并在统计上对亚马逊和变色龙云上的四个分类DNN应用程序的执行时间进行建模。其次,我们采用一种以资源为中心的方法,并分析了基于费率的指标,每秒(MIPS)的数百万个指导形式(MIPS)用于云中的异质机。这种非参数建模是通过折刀和引导程序重新采样方法实现的,为异质云机提供了MIPS的置信区间。这项研究的发现对研究人员和云解决方案架构师有助于开发解决方案,这些解决方案与云中DNN应用的推理时间的随机性质具有牢固性,并且可以为其用户提供更高的QoS并避免意外的结果。
Cloud-based Deep Neural Network (DNN) applications that make latency-sensitive inference are becoming an indispensable part of Industry 4.0. Due to the multi-tenancy and resource heterogeneity, both inherent to the cloud computing environments, the inference time of DNN-based applications are stochastic. Such stochasticity, if not captured, can potentially lead to low Quality of Service (QoS) or even a disaster in critical sectors, such as Oil and Gas industry. To make Industry 4.0 robust, solution architects and researchers need to understand the behavior of DNN-based applications and capture the stochasticity exists in their inference times. Accordingly, in this study, we provide a descriptive analysis of the inference time from two perspectives. First, we perform an application-centric analysis and statistically model the execution time of four categorically different DNN applications on both Amazon and Chameleon clouds. Second, we take a resource-centric approach and analyze a rate-based metric in form of Million Instruction Per Second (MIPS) for heterogeneous machines in the cloud. This non-parametric modeling, achieved via Jackknife and Bootstrap re-sampling methods, provides the confidence interval of MIPS for heterogeneous cloud machines. The findings of this research can be helpful for researchers and cloud solution architects to develop solutions that are robust against the stochastic nature of the inference time of DNN applications in the cloud and can offer a higher QoS to their users and avoid unintended outcomes.