论文标题
在因果集的地平线熵上
On the horizon entropy of a causal set
论文作者
论文摘要
我们讨论了如何在因果集合上定义运动范围的熵。我们将视野分子的最新定义扩展到了一个越过地平线的无效性超表面的设置。我们认为,与间距类型相反,该延伸未能在因果集合近似弯曲的时空时以连续性极限产生hypersurface-horizon相交的局部性。然后,我们研究通过因果层截断的因果钻石的两个区域之间的时空互信息定义的熵,并发现它确实限制在交叉路口的面积上。
We discuss how to define a kinematical horizon entropy on a causal set. We extend a recent definition of horizon molecules to a setting with a null hypersurface crossing the horizon. We argue that, as opposed to the spacelike case, this extension fails to yield an entropy local to the hypersurface-horizon intersection in the continuum limit when the causal set approximates a curved spacetime. We then investigate the entropy defined via the Spacetime Mutual Information between two regions of a causal diamond truncated by a causal horizon, and find it does limit to the area of the intersection.