论文标题

turán密度为$ 2 $ - 边缘色的两分图,并在$ \ {2,3 \} $上使用应用

Turán Density of $2$-edge-colored Bipartite Graphs with Application on $\{2, 3\}$-Hypergraphs

论文作者

Bai, Shuliang, Lu, Linyuan

论文摘要

我们认为Turán的问题是$ 2 $ - 边缘色的图。 $ 2 $ - 边缘色的图$ h =(v,e_r,e_b)$是由顶点套装$ v $,一组红色边缘$ e_r $的三重组成的三重组,以及一组蓝色边缘$ e_b $,带有$ e_r $和$ e_b $的$ E_B $,不必是分离的。 $ h $的turán密度$π(h)$定义为$ \ lim_ {n \ to \ infty} \ max_ {g_n} h_n(g_n)$,其中$ g_n $在所有可能的$ 2 $ edg $ n $ fertices中选择了$ n $ note $ n $ n $ h $ h $ h $ h $ s selp selp and s s selp-h $ $ h_n(g_n)=(| e_r(g)|+| e_b(g)|)/{n \ select 2} $是测量$ g_n $的边缘密度的公式。我们将确定所有$ 2 $ - 边缘色的两部分图的Turán密度。我们还对$ \ {2,3 \} $ - 超图的Turán问题进行了重要的研究。

We consider the Turán problems of $2$-edge-colored graphs. A $2$-edge-colored graph $H=(V, E_r, E_b)$ is a triple consisting of the vertex set $V$, the set of red edges $E_r$ and the set of blue edges $E_b$ with $E_r$ and $E_b$ do not have to be disjoint. The Turán density $π(H)$ of $H$ is defined to be $\lim_{n\to\infty} \max_{G_n}h_n(G_n)$, where $G_n$ is chosen among all possible $2$-edge-colored graphs on $n$ vertices containing no $H$ as a sub-graph and $h_n(G_n)=(|E_r(G)|+|E_b(G)|)/{n\choose 2}$ is the formula to measure the edge density of $G_n$. We will determine the Turán densities of all $2$-edge-colored bipartite graphs. We also give an important application of our study on the Turán problems of $\{2, 3\}$-hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源