论文标题

贝叶斯推断的概率条件系统不变产生

Probabilistic Conditional System Invariant Generation with Bayesian Inference

论文作者

Stein, Meriel, Elbaum, Sebastian, Feng, Lu, Sheng, Shili

论文摘要

不变性是程序属性的一组属性,在执行程序期间将是正确的。由于手动开发这些不变的人可能是昂贵且具有挑战性的,因此有无数的方法支持从程序痕迹等来源的可能不变的自动化采矿。但是,现有的方法并不能够捕获富有的状态,这些状态可以调节自动移动机器人的行为,或者管理与这些系统中许多变量相关的不确定性。这意味着只有在特定州下出现的有价值的不变性。在这项工作中,我们介绍了一种推断条件概率不变的方法,以帮助表征如此丰富的状态,随机系统的行为。这些概率不变性可以编码有条件模式的家族,是使用贝叶斯推断生成的,以利用观察到的痕量数据来针对从以前的经验和专家知识中收集的先知,并根据其意外价值和信息内容进行排名。我们对两个半自主移动机器人系统的研究表明,所提出的方法如何能够产生有价值且以前隐藏的状态不变性。

Invariants are a set of properties over program attributes that are expected to be true during the execution of a program. Since developing those invariants manually can be costly and challenging, there are a myriad of approaches that support automated mining of likely invariants from sources such as program traces. Existing approaches, however, are not equipped to capture the rich states that condition the behavior of autonomous mobile robots, or to manage the uncertainty associated with many variables in these systems. This means that valuable invariants that appear only under specific states remain uncovered. In this work we introduce an approach to infer conditional probabilistic invariants to assist in the characterization of the behavior of such rich stateful, stochastic systems. These probabilistic invariants can encode a family of conditional patterns, are generated using Bayesian inference to leverage observed trace data against priors gleaned from previous experience and expert knowledge, and are ranked based on their surprise value and information content. Our studies on two semi-autonomous mobile robotic systems show how the proposed approach is able to generate valuable and previously hidden stateful invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源